MYANMAR

Source: esri

Climate and geography

General

Myanmar - officially the Republic of the Union of Myanmar, also known as Burma - is a sovereign state in Southeast Asia, bordered by India and Bangladesh in the West, Thailand and Laos in the East and China in the North and Northeast. In the South, about one third of Myanmar's total area forms an uninterrupted coastline of 1,930 km along the Bay of Bengal and the Andaman Sea. The area of Myanmar is 67.7 Mha (million hectares) with, in 2022, a population of 54.2 million, or 0.8 persons per ha (Wikipedia and United Nations, 2022).

Much of the country lies between the Tropic of Cancer and the Equator in the monsoon region of Asia. The coastal regions receive over 5,000 mm of rain annually. Annual rainfall in the delta region is approximately 2,500 mm, while average annual rainfall in Central Myanmar is less than 1,000 mm. The Japan International Cooperation Agency (JICA) *et al.* (2011) present a Table with the chance of occurrence of extreme rainfall for Rangoon and Pathein (Table I).

Table I. Chance of occurrence of extreme rainfall in mm for the stations Rangoon and Pathein (Japan	ı
International Cooperation Agency (JICA) et al., 2011)	

Station	Rangoon			Pathein		
Chance of occurrence	One day	2 day	3 day	One day	2 day	3 day
per year in %	maximum	consecutive	consecutive	maximum	consecutive	consecutive
20	147	204	236	161	242	308
10	170	234	267	183	278	353
5	192	263	296	205	312	395
4	199	272	305	212	323	408
2	220	300	334	232	357	450
1	241	328	363	253	390	491
0.5	262	356	391	274	424	532

The Northern regions are the coolest, with average temperatures of 21 °C. Coastal and delta regions have an average maximum temperature of 32 °C.

Myanmar is frequently hit by cyclones. Some characteristic data are shown in Table II.

(Japan International Cooperation Agency (JICA) et al., 2011)						
Cyclone	Date of occurrence	Death*)**)	Affected*)			
-	19 May 1926	2700	Unknown			
Cyclone 196510	23 October 1965	100	500,000			
Cyclone 196702	16 May 1967	100	130,200			
Cyclone 196712	23 October 1967	178	Unknown			
Cyclone 196801	10 May 1968	1070	90,000			
Cyclone Nargis	2 May 2008	133,000	1,200,000-1,900,000			

Table II. Historical cyclones that hit Myanmar

*) Government of Myanmar, **) Includes missing people

The Group Polder Development (1982), and Centre for Civil Engineering Research and Codes (CUR) and Ministry of Transport, Public Works and Water management (1993) describe that until 1850 most of the Irrawaddy Delta - about 3.5 Mha - was in its natural state. Following the rush of the settlers from Upper to Lower Myanmar, the construction of dikes to protect the areas from being flooded kept pace with the increase in population. The system of dikes provides a unique example of partial flood protection. The major dikes form a horseshoe around the areas between the river distributaries, leaving the downstream ends open (Figure 1). In the coastal zone a modest start was made to build sea dikes to

protect the lands from being flooded with saline water.

Figure 1. Flood protection in the Irrawaddy Delta (Group Polder Development, 1982)

The Japan International Cooperation Agency (JICA) *et al.* (2011) describe that dike building in the Irrawaddy Delta started in 1861 and that many dikes were constructed between 1880 and 1920. In 1909 the Burma Embankment Act was enacted and the Manual on Care and Maintenance of Embankments was released. By 2011 600,000 ha of rice fields were protected at a risk of failure of 5% per year.

The Japan International Cooperation Agency (JICA) *et al.* (2011) also describe that the Irrawaddy Delta is the major rice producing area in Myanmar. Due to the cyclone Nargis in 2008 there were 140,000 casualties and 770,000 ha rice field was damaged (Figure 2). The damage was caused by flooding and salt water intrusion and seriously affected the living conditions in the polders.

The Netherlands Embassy in Bangkok and Netherlands Economic Mission in Rangoon (2015) state that one of the regional challenges are the modernization of agricultural polders.

JICA *et al.* (2011) describe that in the polders in the Irrawaddy Delta there is no need to store abundant rainwater during the rainy season. The old river courses are functioning as major drains and small artificial drains are connected with the dikes as required in the areas. Whereas in the areas surrounded by dikes, man-made drains are predominant. In the final stage of the rainy season the slide gates of the sluices located at the outlets of the drains are closed to store the fresh rainwater in the drains. Salt water intrusion through degraded slide gates and flap gates may occur. Hence, the water impounded in the drains will then be contaminated with salty water.

The capacities of the drainage network are usually determined to drain 5 days consecutive rainfall at 5 years return period within 10 days. At the peak of the rainy season, inundations of the paddy fields sometimes occurs in low-lying areas or in areas with insufficient drainage capacity. The drainage condition of areas with an insufficient drainage network would be improved by providing additional facilities. However, improvement of a drainage network in low-lying areas may not be possible by just improving gravity drainage. In such cases drainage by pumping becomes required. However, under the local conditions of Myanmar drainage by pumping is generally not feasible.

Figure 2. Location map of polders and dikes damaged by the cyclone Nargis (Zaw and Tant, 2010 and Japan International Cooperation Agency (JICA) et al., 2011)

JICA *et al.* (2011) also present a schematic cross-section and layout of the drainage systems (Figure 3). The characteristic data are: top width 3.0 - 105.0 m, bottom width 1.2 - 45.0 m and depth 0.45 - 5.4 m. The length of the drains varies from 48 m to 20.9 km. The average density of the drains was determined at 0.83 km/km².

Figure 3. Schematic cross-section and lay out of the drainage systems in the Irrawaddy Delta (JICA et al., 2011)

In systems with gravity drainage the water level in the drains fluctuates according to the discharge of excess rainfall, river water levels and operation of the gates. During the wet season, rainwater accumulates inside the polders. When possible excess water is drained to the adjacent river through sluice gates. During the dry season, canal water levels inside the polders generally become lower than the river water level. In the coastal zone these levels may be influenced by the tidal fluctuation. When salinity problems can occur sluice gates have to be operated in such a way that salty river water cannot enter into a polder. Therefore, two types of gates exist in the sluices, flap gates at the river side to prevent river water from flowing into the polder, and at the polder side slide gates to control the storage of fresh water and to drain excess water when required (Figure 4). For example, the gates in the polders in the Ayeyawady Delta are operated by a simple operation rule. That is *open the slide gates on 15th May and close the slide gates in the last half month of September*. The flap gates are generally operated arbitrarily by difference in water level without manual control.

Figure 4. Schematic cross-section of a polder dike with a discharge sluice (JICA et al., 2011)

Existing polders

The Group Polder Development (1982) describes that in the Irrawaddy Delta an area of 626,520 ha has been endiked as described above.

Zaw and Than (2010) and JICA *et al.* (2011) present that 34 polders were damaged due to the Cyclone Nargis (Figure 2 and Tables I and II).

Rangoon reclamation Scheme (6,000 ha). This area has been reclaimed for urban and industrial development. The concerned areas are situated along the banks of tidal rivers surrounding the city of Rangoon. Drainage is provided by a drainage system that discharges through automatic sluices or pumping stations (Group Polder Development, 1982).

General characteristics of the polder in Myanmar are shown in Table III.

Proposed polders

No proposed polders have been identified.

Location of the polders in Myanmar as shown on the World polder map

The location of the polders in Myanmar is shown in Figure 5.

Figure 5. Location of the polders in Myanmar (source: esri – Batavialand)

The pictures by Prof. Adriaan Volker are shown in Table IV.

References

- Centre for Civil Engineering Research and Codes (CUR) and Ministry of Transport, Public Works and Water management, 1993. *Hydrology and water management of deltaic areas*. CUR report 93-5. Gouda, the Netherlands
- Group Polder Development, Department of Civil Engineering, Delft University of Technology, 1982. Polders of the World, Compendium of polder projects. Delft, the Netherlands
- Horst, T. van der, M.M. Rutten, N.C. van de Giesen and R.F. Hanssen, 2018. Monitoring land subsidence in Yangon, Myanmar using Sentinel-1 persistent scatterer interferometry and assessment of driving mechanisms. *Remote Sensing of Environment*. 217, 101-110.
- Japan International Cooperation Agency (JICA), Sanyu Consultants Inc. and Nippon Koei Co., Ltd., 2011. The project for preservation of farming area for urgent rehabilitation of agricultural production and rural life in areas affected by cyclone Nargis in the Republik of the Union of Myanmar. Ministry of Agriculture and Irrigation, The Republic of the Union of Myanmar.

- Ministry of Agriculture, Livestock and Irrigation and Water Utilization Management Department. 2016. Outline of irrigation and Water Utilization Department.
- Netherlands Embassy in Bangkok and Netherlands Economic Mission in Yangonon, 2015. *Factsheet water in Myanmar*.
- United Nations, Department of Economic and Social Affairs, Population Division. 2022. World Population Prospects, medium prognosis. The 2022 revision. New York, USA.
- Zaw, Tint and Mu Mu Than, 2010. *Climate change impacts to the water environment and adaptation options*. Union of Myanmar, Ministry of Agriculture and Irrigation, Irrigation Department. Powerpoint presentation.

Bart Schultz

Lelystad, October 2023

Name	Reclamation	Area in ha	Type *)	Latitudes	Longitudes	Elevation in m+MSL	Land use
Polders in the Irrawaddy Delta							Mainly rice
* Alegyun (1) Polder		1,670	RLL	16° 01' N	94° 30' E	4	
* Alegyun (2) Polder		3,610	RLL	16° 02' N	94° 32' E	5	
* Alegyun (3) Polder		3,650	RLL	16° 05' N	94° 36' E	4	
* Magyibinmadaukan		550	RLL	16° 10' N	94° 38' E	6	
* Thingangyi		700	RLL	15° 58' N	94° 38' E	4	
* Zinywe		620	RLL	16º 01' N	94° 41' E	4	
* Leikkwin		380	RLL	16° 02' N	94° 39' E	4	
* Labutta (South)		2,870	RLL	16° 08' N	94° 42' E	5	
* Labutta (North)		7,830	RLL	16º 11' N	94° 44' E	6	
* U Gaungpu		370	RLL	15° 51' N	94° 48' E	6	
* Bitud Island (1)		1,900	RLL	16° 03' N	94° 53' E	5	
* Bitud Island (2)		2,780	RLL	16° 10' N	94° 54' E	5	
* Bitud Island (3)		3,220	RLL	16° 10' N	95° 00' E	4	
* Bitud Island(4)		7,640	RLL	16º 18' N	95° 04' E	5	
* Daunggyi polder		9,890	RLL	16° 00' N	95° 23' E	5	
* Daunggyi (East)		8,930	RLL	16° 03' N	95° 32' E	4	
* Daunggyi (West)		6,940	RLL	16° 05' N	95° 26' E	3	
* Daunggyi (Upper)		1,380	RLL	16° 09' N	95° 30' E	4	
* Dawnvein Polder		1,200	RLL	15° 54' N	95° 36' E	3	
* Myokone Polder		2,280	RLL	15° 58' N	95° 35' E	2	
* Kyetphamwezaung		12,570	RLL	16° 04' N	95° 36' E	3	
* Banbwezu		5,330	RLL	16º 16' N	95° 35' E	3	
* Daydalu		1,720	RLL	16° 00' N	94° 39' E	3	
* Letpanbin		3,460	RLL	16° 04' N	94° 40' E	3	
* Zinbaung		2,670	RLL	16° 06' N	95° 42' E	4	
* Myaseinkan		5,470	RLL	16° 14' N	95° 51' E	4	
* Thandi		1,390	RLL	16° 18' N	95° 53' E	4	
* Suclubbaluma		2,950	RLL	16° 23' N	95° 58' E	5	
* Hleseikchaunggyi		910	RLL	16° 23' N	94° 54' E	5	
* Tamatakaw		5,350	RLL	16° 17' N	96° 02' E	4	
* Kyonsoat		240	RLL	16° 20' N	96° 04' E	3	
* Maubin Island (North)		11,000	RLL	16° 49' N	95° 55' E	6	

Table III. General characteristics of existing polders in Myanmar

* Maubin Island (South)	4,610	RLL	16° 47' N	96° 00' E	4	
* Thonegwakyun	8,120	RLL	16° 47' N	96° 05' E	4	
Remaining polders in the	486,320	RLL				
Irrawaddy Delta						
Rangoon Reclamation Scheme	6,000	RLL	16° 50' N	96° 16' E	4	Urban and industry
Total	626,520					

*) RLL = reclaimed low-lying land; LGS = land gained on the sea; DL = drained lake

Table IV. Pictures of polders and lowlands in Myanmar by Prof. Adriaan Volker

Table IV. Pictures of polders and lowlands in Myanmar by Prof. Adriaan Volker (continued)

A2 025/D1.II.25 A2 027/D1.II.27 A2 028/D1.II.28 A2 026/D1.II.26 Aerial picture, presumably of one Aerial picture, presumably of one Aerial picture, presumably of one Aerial picture lowland area, of the branches of the Irrawaddy of the branches of the Irrawaddy of the branches of the Irrawaddy presumably along one of the River, 1977 River, 1977 River, 1977 branches of the Irrawaddy River, 1977 A2 029/D1.II.29 A2 032/D1.II.32 A2 030/D1.II.30 A2 031/D1.II.31 Aerial picture lowland area, Aerial picture lowland area, Aerial picture lowland area, Aerial picture lowland area, presumably along one of the branches of the Irrawaddy River, 1977 1977 1977 1977

Table IV. Pictures of polders and lowlands in Myanmar by Prof. Adriaan Volker (continued)

A2 033/D1.II.33	A2 034/D1.II.34	A2 035/D1.II.35	A2 036/D1.II.36
Aerial picture lowland area,	Irrawaddy Delta, bank erosion near	Dike in Henzada, 1977	Buildings possibly at and behind a
presumably along one of the	Henzada threatening a dike that		dike in Henzada, 1977
branches of the Irrawaddy River,	protects the town. To be prepared		
1977	dike has been built to some as a		
	second line of defence, 1977		
A2 037/D1.II.37	A2 038/D1.II.38	A2 039/D1.II.39	A2 040/D1.II.40
Dike with possibly a seepage	Dike, presumably along one of the	Dike, presumably along one of the	Dike, presumably along one of the
drain, presumably along one of	branches of the Irrawaddy River,	branches of the Irrawaddy River,	branches of the Irrawaddy River,
the branches of the Irrawaddy River, 1977	1977	1977	1977

Table IV. Pictures of polders and lowlands in Myanmar by Prof. Adriaan Volker (continued)

Table IV. Pictures of polders and lowlands in Myanmar by Prof. Adriaan Volker (continued)

A2 053/D1.II.53 A2 054/D1.II.54 A2 055/D1.II.55 A2 056/D1.II.56 Traditional wood transport, Traditional wood transport, Traditional boats at the Malleto Traditional boats at the Malleto Chaung, presumably one of the presumably at one of the branches presumably at one of the branches Chaung, presumably one of the branches of the Irrawaddy River, branches of the Irrawaddy River, 1977 of the Irrawaddy River, 1977 of the Irrawaddy River, 1977 1977 A2 059/D1.II.59 A2 060/D1.II.60 A2 057/D1.II.57 A2 058/D1.II.58 Dike, presumably along one of the Dike with road and lowland, Group picture. Prof. Adriaan Landscape in the Irrawaddy Delta, branches of the Irrawaddy River, presumably along one of the branches Volker is right in front, 1977 1977 of the Irrawaddy River, 1977 1977 A2 061/D1.II.61 A2 062/D1.II.62 A2 064/D1.II.64 A2 063/D1.II.63 Landscape in the Irrawaddy Delta, Landscape in the Irrawaddy Delta, Settlement, presumably along one Discharge sluice of the Labutta of the branches of the Irrawaddy 1977 1977 Polder, 1977 River, 1977

Table IV. Pictures of polders and lowlands in Myanmar by Prof. Adriaan Volker (continued)

Table IV. Pictures of polders and lowlands in Myanmar by Prof. Adriaan Volker (continued)